Transforming growth factor-beta-induced differentiation of smooth muscle from a neural crest stem cell line.
نویسندگان
چکیده
During vascular development, nascent endothelial networks are invested with a layer of supporting cells called pericytes in capillaries or smooth muscle in larger vessels. The cellular lineage of smooth muscle precursors and factors responsible for regulating their differentiation remain uncertain. In vivo, cells derived from the multipotent neural crest can give rise to vascular smooth muscle in parts of the head and also the cardiac outflow tract. Although transforming growth factor-beta (TGF-beta) has previously been shown to induce some smooth muscle markers from primary cultures of neural crest stem cells, the extent of the differentiation induced was not clear. In this study, we demonstrate that TGF-beta can induce many of the markers and characteristics of vascular smooth muscle from a neural crest stem cell line, Monc-1. Within 3 days of in vitro treatment, TGF-beta induces multiple smooth muscle-specific markers, while downregulating epithelial markers present on the parent cells. Treatment with TGF-beta also induces a contractile phenotype that responds to the muscarinic agonist carbachol and is not immediately reversed on TGF-beta withdrawal. Examination of the signaling pathways involved revealed that TGF-beta activation of Smad2 and Smad3 appear to be essential for the observed differentiation. Taken together, this system provides a novel model of smooth muscle differentiation that reliably recapitulates the process observed in vivo and allows for dissection of the pathways and processes involved in this process.
منابع مشابه
Transforming Growth Factor- –Induced Differentiation of Smooth Muscle From a Neural Crest Stem Cell Line
During vascular development, nascent endothelial networks are invested with a layer of supporting cells called pericytes in capillaries or smooth muscle in larger vessels. The cellular lineage of smooth muscle precursors and factors responsible for regulating their differentiation remain uncertain. In vivo, cells derived from the multipotent neural crest can give rise to vascular smooth muscle ...
متن کاملAlternative Neural Crest Cell Fates Are Instructively Promoted by TGFβ Superfamily Members
How growth factors influence the fate of multipotent progenitor cells is not well understood. Most hematopoietic growth factors act selectively as survival factors, rather than instructively as lineage determination signals. In the neural crest, neuregulin instructively promotes gliogenesis, but how alternative fates are determined is unclear. We demonstrate that bone morphogenic protein 2 (BMP...
متن کاملCalcineurin initiates smooth muscle differentiation in neural crest stem cells
The process of vascular smooth muscle cell (vSMC) differentiation is critical to embryonic angiogenesis. However, despite its importance, the vSMC differentiation program remains largely undefined. Murine gene disruption studies have identified several gene products that are necessary for vSMC differentiation, but these methodologies cannot establish whether or not a factor is sufficient to ini...
متن کاملTransforming growth factor beta-SMAD2 signaling regulates aortic arch innervation and development.
Aortic arch interruptions in humans and animal models are mainly caused by aberrant development of the fourth pharyngeal arch artery. Little is known about the maturation of this vessel during normal and abnormal development, which is the subject of this study. Tgfbeta2 knockout mice that present with fourth artery defects have been associated with defective neural crest cell migration. In this...
متن کاملEvaluation of Transforming Growth Factor Beta 1 and Curcumin on Proliferation and Differentiation of Nasal-Derived Chondrocyte Seeded on the Fibrin Glue Scaffold
Introduction: Natural biomaterials and growth factors are key factors in tissue engineering. The objective of the present study was to evaluate transforming growth factor beta 1 (TGF-β1) and curcumin on proliferation and differentiation of nasal-derived chondrocyte seeded on the fibrin glue scaffold. Methods: Chondrocytes were isolated from nasal samples. Nasal-derived chon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation research
دوره 94 9 شماره
صفحات -
تاریخ انتشار 2004